www.magazine-industry-usa.com
12
'11
Written on Modified on
MAYR
Limiting high torques reliably. New torque limiting clutch for heavy engineering.
In addition to numerous other innovations, mayr® power transmission is to present a large disengaging torque limiting clutch for torques of up to 280,000 Nm at the Hannover Trade Fair. This large clutch for heavy engineering is combined with curved tooth couplings for the connection of two shafts.
As international market leaders, mayr® power transmission has provided the widest product range of load holding, load disconnecting, torque and force limiting, frictionally locking, positive locking, magnetic, regulatable and switchable torque limiting clutches for decades.
In spite of this wide range, the company have noticed an increasing demand for new torque limiting clutches with extremely high torques and for application-optimised solutions. For this reason, the performance range of the disengaging EAS®-element clutches has been extended at the time of the Hannover Trade Fair in 2011. The latest design with curved tooth couplings for the connection of two shafts is designed for torques of up to 280,000 Nm.
EAS®-element clutches transfer the torque using positive locking during normal operation. On overload, they separate the input and output nearly residual torque-free with a high switch-off and repeat accuracy. The kinetic energy from the rotating masses stored in the system can slow down freely. Such disengaging clutches do not automatically re-engage. They remain disengaged until they are re-engaged either manually or via mechanical or hydraulic devices.
For 30 years, disengaging EAS®-element clutches have been protecting systems and drives in heavy engineering against expensive overload damage. Our decades of experience and the collective, comprehensive know-how make mayr® power transmission your ideal partner for mechanical overload protection in drives with extremely high torques, high speeds and large mass moments of inertia.
Figure: Disengaging EAS®-element clutches for heavy engineering disengage the input and output on overload. The energy from the rotating masses stored in the system can slow down freely.